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Abstract 

The symmetry-mode analysis of a structural phase 
transition involves the use of methods of the representa- 
tion theory of space groups. The aim of the paper is to 
present an alternative approach for the determination of 
the primary and secondary symmetry modes that 
contribute to the structural distortion of the low- 
symmetry phase. It only requires the systematic use of 
the data from International Tables for Crystallography, 
Vol. A, and is based on a fact, well known to 
crystallographers: the fully symmetrical displacements 
of any orbit of atoms (i.e. the modes compatible with the 
symmetry of the structure) follow in a straightforward 
way from the coordinate triplets of the corresponding 
Wyckoff positions. This property, systematically used for 
all intermediate subgroups between the space groups of 
the two phases, allows the determination of the relevant 
symmetry modes. Their distinction into primary and 
secondary modes comes out directly in the process of 
calculation. As an example, primary and secondary 
modes in the ferroelectric distortion of potassium 
selenate are divided. 

1. Introduction 

From a structural viewpoint, the main signature of a 
continuous or quasicontinuous structural phase transition 
of displacive type is the appearance in the low-symmetry 
phase of a symmetry-breaking distortion with respect to 
the high-symmetry phase (Landau & Lifshitz, 1980; 
Kocinski, 1990). This distortion is mainly caused by the 
freezing of some mode associated with the order 
parameter that we may call the primary mode. This 
mode corresponds to the degree of freedom of the system 
that becomes unstable at the phase transition. However, 
secondary modes are also triggered by the phase 
transition and can also have non-zero spontaneous 
amplitudes in the distorted structure (Cowley, 1980; 
Toledano & Toledano, 1987). A quantitative comparison 
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of the experimental structures of both phases is sufficient 
for determining the total structural distortion that relates 
them, but the separation of the unstable primary mode, 
which triggers the transition, from the secondary modes 
requires some symmetry analysis of the global distortion. 
This is usually done using symmetry modes (Mafies, 
Tello & Perez-Mato, 1982; Perez-Mato, Gaztelua, 
Madariaga & Tello, 1986; Withers, Hua, Welberry & 
Vincent, 1988; Hatch, Artman & Boerio-Goates, 1990; 
Stokes, Hatch & Wells, 1991). First, the symmetry modes 
of the parent phase compatible with the low-symmetry 
phase must be calculated and then, using their ortho- 
normality properties, the global distortion is decomposed 
as a sum of the contributions of all of them. Finally, the 
eigenvector of the primary mode can be derived from the 
non-zero amplitudes of the symmetry modes associated 
with the order-parameter symmetry. Such an analysis is 
rather complex as it requires full use of group-theoretical 
methods: subduction properties of the irreducible 
representations, use of projectors to derive the symmetry 
modes etc. Here, we present an alternative method for the 
symmetry analysis of a given structural distortion. It only 
requires the systematic use of International Tables for 
Crystallography (1995), Vol. A (henceforth referred to as 
1/95). From these tables and for any space group, one 
can easily derive for any orbit of atoms the fully 
symmetric or identity modes, i.e. the modes that trans- 
form according to the identity representation of the 
group. It will be shown that this property, systematically 
used for all intermediate subgroups connecting the space 
groups of the two phases, yields a decomposition of the 
structural distortion in terms of chain-adapted modes. 
These modes are constructed and classified according to 
their compatibility with the different space groups in the 
subgroup chains. Although formally this symmetry 
classification is not the same as the one based on 
irreducible representations, in practice, it is equivalent in 
most cases and quite sufficient for a decomposition of the 
structural distortion into secondary and primary compo- 
nents. As an example, the method is applied to the 
symmetry break Pnam--+ Pna21(3a ), which is present, 
for instance, in potassium selenate, and the results are 
compared with those previously published using con- 
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ventional group-theoretical tools (Perez-Mato, Gaztelua, 
Madariaga & Tello, 1986). 

2. Distortion-mode analysis 

Let us consider a structural phase transition with the 
symmetry change G---~H, with G > H. The structural 
distortion relating the two phases can in general be 
decomposed into a homogeneous strain and an atomic 
displacement field, u~(l, g), representing the displace- 
ments of each atom (l, x) in the low-symmetry structure, 
where l represents a unit cell of the high-symmetry 
structure, x an atomic label within the corresponding unit 
cell and a stands for the three independent components 
(say x, y, z).1 The displacement field u~(l, x) is calculated 
from the subtraction of the atomic positions of the two 
structures, each expressed in relative units. Thus, a 
displacement field u~(l, g ) =  0 would correspond to a 
phase where the structural distortion is totally described 
by a homogeneous strain of the high-symmetry structure. 

In general, both the strain and the atomic displace- 
ments u~(l, x) contain a part that is also symmetry 
allowed in the high-symmetry phase. The determination 
of this part of the distortion requires some conventional 
reference structure within the space group G. This can be, 
for instance, the experimental G structure at some fixed 
temperature, or hypothetical G structure extrapolated into 
the thermal range of the H phase. The remaining part of 
the distortion is, by definition, symmetry forbidden in the 
high-symmetry phase and, therefore, its spontaneous 
non-zero magnitude in the H phase is uniquely 
determined. If G and H belong to different crystal 
systems, this symmetry-breaking part of the structural 
distortion includes some strain component, i.e. the 
transition is ferroelastic. The decomposition of the 
spontaneous strain relating both phases into irreducible 
components distinguishing primary and secondary strain 
components is in principle rather straightforward and 
well documented (Salje, 1990). We are interested in an 
analogous decomposition of the displacements u~(l, x), 
which, henceforth, are referred to as the structural 
distortion, obviating the strain component. 

By definition, the order parameter or primary distor- 
tion describes completely the symmetry break of the 
transition. Hence, if Dq; TM is the active representation of 
the phase transition, i.e. the irreducible representation 
(irrep) associated with the order parameter, it should have 
as maximal invariance group, for some subspace, the 
group H. In group-theoretical language, the subduced 
r e p r e s e n t a t i o n  (D  qor° ,I,H) should contain the identity 
representation of H with some multiplicity, while for any 
other space group Z, such that H < Z < G, this 
multiplicity reduces in at least one unit (Jaric & Birman, 

t A generalization to structural distortions with symmetry-breaking 
changes in the distribution of atomic occupation probabilities can be 
done. For the sake of simplicity, we restrict the expressions to 
distortions completely described through atomic displacements. 

1977). One can say that H is an isotropy subgroup of G 
for the irrep D q~° (Stokes & Hatch, 1988). 

Besides the primary distortion of symmetry Dq0 ~°, the 
total distortion contains secondary distortions associated 
with other irreps. These remaining distortion components 
cannot produce any further symmetry break, i.e. they 
should all be compatible with the group H. The criteria to 
determine these other irreps can be found for instance in 
Kopsky (1980). Essentially, they must have isotropy 
subgroups that contain H or, in more formal terms, the 
representation subduced in H by the irrep D q*~, say 
(D q*~ S H), should contain the identity representation of 
H at least once. This is easy to understand: being 
invariant subspaces, each (q* r) distortion should be kept 
unchanged by the action of the elements of H, as this is 
by definition the invariance group of the overall 
distortion. This necessarily requires the existence in the 
Dq*Lrepresentation space of a subspace with an isotropy 
group equal to or higher than H. Therefore, besides the 
active representation, the irreps present in the structural 
distortion are those having as isotropy subgroups any 
space group Z intermediate between H and G. Hence, 
instead of the usual symmetry-mode description, it is 
possible to consider a decomposition of the total 
distortion in terms of components with different isotropy 
space groups: 

u,~(l, K) = ~ ~ CZ(i)~z(x, l[i). (1) 
z i 

The first sum in (1) is over all possible space groups Z, 
such that G > Z > H, including the trivial cases G and H. 
A decomposition of the type of (1) was first introduced 
by Rae, Thompson, Withers & Willis (1990) for the 
particular case of bismuth titanate. The symmetry 
property that defines the modes ~z(K, lli) is the invariance 
with respect to their isotropy space group Z and, by 
definition, for each set of Z modes, no linear combination 
exists with an isotropy group higher than Z. As shown in 
the next section, the derivation of this basis of symmetry- 
adapted modes requires the use of the structure of 
subgroup chains connecting H and G. Hence, we shall 
call them chain-adapted (symmetry) Z modes. For each 
orbit, the modes depend only on the type of Wyckoff 
position associated with it, i.e. the algebraic structure of 
the symmetry basis ~z(x, lli) is the same for all orbits of 
the same Wyckoff type. Therefore, in the following, all 
expressions [including (1)] can be considered valid 
separately for each single orbit of atoms, and the set of 
atoms (l, x) in (1) and following equations can be 
restricted to those related by the operations of G with one 
single atom in the asymmetric unit of the reference G 
structure. For each group Z, there can exist several Z 
modes in (1) and the index i - 1 . . . . .  n z runs over them. 

In Appendix A, it is shown that a symmetry 
decomposition of the structural distortion of the type 
(1) is, in many cases, equivalent to one using irreducible 
representations and, as shown in the next section, much 
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easier to derive. In particular, the low-symmetry space 
group H is usually an isotropy group of only one 
representation Dqor°.t In this case, the term in (1) 
corresponding to Z = H coincides with the primary 
distortion u°(l, x) associated with the active representa- 
tion: 

u°(l, x) = y~ CH(j)~y(x, llj). (2) 
Y 

Furthermore (see Appendix A), the H modes in (2) have a 
direct relation with the D n;~° modes. For instance, if  the 
subspace, in the representation space of D q;~°, with 
isotropy group H, is one-dimensional (a rather common 
case, d ,  = 1), the chain-adapted H modes ~ff(K, lli) can 
be identified with symmetry-fixed linear combinations of 
the D qo~° symmetry modes. If, on the other hand, d ,  is 
equal to the total dimension o f D  q0~° (which includes the 
rather common situation when the active irrep is one- 
dimensional), the chain-adapted H modes can be directly 
identified as the set of  D qg,~° modes. 

The set of  Z modes in (1) with Z being strictly a 
supergroup of H are secondary distortions and they can 
be similarly related with those defined using the group- 
theoretical approach, so that, in many practical cases, the 
symmetry analysis of the distortion in terms of chain- 
adapted modes is equivalent to the one with a basis 
adapted to the irreps of G. Even in a quite general case, 
as discussed above, the description of the distortion in 
terms of chain-adapted modes is sufficient for distin- 
guishing the primary structural distortion associated with 
the order parameter (given by the H modes), from 
secondary distortions with higher isotropy subgroups 
associated with secondary degrees of freedom. Only in 
the rather seldom case (Stokes & Hatch, 1988) when 
more than one irrep of G have H as an isotropy subgroup, 
the decomposition (1) would not be enough for the 
determination of the primary distortion. While in the 
approach using irreps a full use of the group-theoretical 
tools is required, decomposition (1), as explained below, 
is simpler to perform. It only needs to determine the set 
of  modes that are identity modes for each intermediate 
space group between H and G. In the next sections, we 
will show how this information can be easily retrieved 
from 1/-95 for each Wyckoff orbit and, used in a 
combined manner through the subgroup chains connect- 
ing H and G, yields the desired basis of chain-adapted 
modes. 

3. Identity symmetry modes and their determination 
from the data in International Tables 

The conventional group-theoretical approach for the 
calculation of the symmetry modes transforming accord- 

1 This is the reason why the knowledge of the symmetry break G --+ H 
is in general sufficient for the identification of the active representation 
in a structural phase transition (Kocinski, 1990; Izyumov & 
Syromyatnikov, 1990). 

ing to some irrep D q'r implies the construction of 
vibration representation V q of the little group G q of the 
wave vector q (see e.g. Izyumov & Syromyatnikov, 1990): 

V q : {(eq (~)DV)(g) ,g  ~ Gq}. (3) 

Here, Pq is the so-called permutation representation 
which shows how the r symmetrically equivalent atoms 
of the unit cell (i.e. the atoms belonging to an orbit Oc) 
permute under a space-group operation. Its (r x r)- 
dimensional matrices are given by 

| 0, grj =~ ri(mod t), t s L, 
Pq(g)ij 

= I e x p ( - i k ' t j  i)' gr; = r i + tj,, tji ~ L, 
i , j - -  1 . . . . .  r ,g  ~ Gq, 

(4) 

where r k - r(l, K), x = 1 . . . . .  r, is the radius vector of 
the a:th atom of Oc and t ~ L is a translation lattice 
vector. 

Following IT95, the elements gi of a space group G are 
described as column-matrix pairs (W i, wi), with a 
rotation part given by the matrix W, and a translation 
part by the column w i. The vector representation 
Dr( - D q*°'v) of  G is trivially constructed from the vector 
representation F v = {W l, W 2 . . . . .  W,} of the point 
group of G: 

o v ( w ,  w) = rv (w)  = w,  (w ,  w) ~ C. (5) 

The polarization vectors of the symmetry modes 
follow from the matrix Eq (dim Eq --  3r), which reduces 
the vibration representation V q into irreps D qT of the little 
group G q. 

(Eq)-I Vq(g)E q = 0 n(qz)Dq~(g)' g E G g. (6) 
qr 

The direct sum is over the little group irreps D q~ 
appearing in the vibration representation and n(qr) is the 
multiplicity of D qr in V q. The columns of the matrix ~:q 
(known also as the reduction matrix) are labeled by 
the triple (qr, m,j),  with j = 1 . . . . .  n(qr) and 
m = l . . . . .  d~(dimD q~) and its rows by the pair (x, o0, 
with x = 1 . . . . .  r and ct = x, y, z. The elements of  E q 
determine the polarization vectors G~(KIqr, re,j) of the 
modes which transform according to the rows of the irrep 
D qT of G q. 

For our further considerations, it is convenient to split 
and rewrite (6) for each irrep D qr separately: 

Vq(g)Eqr : EqrDqr(g),  g E G q. (7) 

Here, the rectangular matrices t:q~ consist of  d r columns 
of eq and correspond to the polarization vectors 
associated with one of the subspaces transforming 
according to the irrep Dqr. The number of independent 
solutions of (7) equals the multiplicity j = 1 . . . . .  n(qr) 
of Dqr in V q. 
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In the following, we will be mainly interested in the 
determination of the identity (symmetry) modes (cf  §2): 
Given a space group G, these are the modes whose 
polarization vectors correspond to the colunms of the 
reduction matrix labeled by the identity representation 
DI( = D °1, q = 0, r = 1). The methods for their calcula- 
tion follow the approaches applied for the calculation of 
eq matrices either by the projection-operator technique or 
using the defining equations (7) as a system of linear 
equations in the elements of ~;qr. 

Here, we present another technique for the determina- 
tion. It is based on a fact well known to crystallographers: 
For a set of equivalent atoms occupying an orbit 06, a 
combined displacement of all of them such that the orbit 
is maintained is clearly compatible (invariant) with the 
space-group symmetry of the structure and, therefore, 
constitutes a symmetry mode transforming according to 
the identity representation D ~ of the space group G. 
These atomic displacements compatible with the orbit 
can be easily derived from the variable parameters of the 
corresponding Wyckoff position in 1/95. 

This 'dynamic' application of the data listed under 
Wyckoff positions in 1/95 can be rigorously demon- 
strated by comparing the definition for an orbit 06(Xo) of 
a point X0 and the set of equations (12) for the 
determination of the reduction matrix. The crystal- 
lographic orbit of a point Xo with respect to a space 
group G is defined as the set of all points X,. that are 
symmetrically equivalent to X0: 

or (Xo)  = {x , l (wi ,  w, + t,)Xo = x , ,  

(W i, w i + ti) ~ G}. (8) 

The subgroup So of G that leaves X0 fixed is the site- 
symmetry group So of G for the point Xo: 

So = {(W~, w; + t;)l(W;, w~ + t~)Xo = Xo, 

( W i ,  W i "~ el) E G}. (9) 

The site-symmetry groups are of finite order; they are 
isomorphic to subgroups of the point group of the space 
group. 

The set of equations (8) defining the orbit 06(Xo) of a 
point Xo with respect to a group G can be considered as a 
nonhomogeneous system of linear equations in the 
coordinates of points X,. belonging to a G orbit: 

(Wj, Wg + tg)X o = X o, for (Wj, wj) E S 0, (10a) 

( W  i, w i -4- t i ) X  0 = X i, for (W,, w~) f[ SO. (10b) 

The coordinate triplets of the Wyckoff positions listed in 
1/95 are solutions of such nonhomogenous systems. The 
solutions are composed of variable parameters which 
correspond to the general solutions of the associated 
homogenous systems and triples of real numbers which 
are particular solutions of the nonhomogenous system 
[equations (10)]. Wyckoff positions without variable 

parameters correspond to the trivial solution of the 
associated homogenous system. 

On the other hand, the system of linear equations for 
the elements of the reduction matrix [see (7)] describing 
the modes that transform according to the identity 
representation D ~ of the space group reduces to the form 

Vq(g)~;=eD l(g)=~;,  g ~ G .  (11) 

To simplify the notation, we have omitted the subindex of 
the matrix ~(~;~ = I;), which is a single 3r column. The set 
of equations (11) is a homogeneous system of linear 
equations in its coefficients and the number of parameters 
in the general solution of the system (11) equals the 
multiplicity of D ~ in V q. The important point is that it 
comprises exactly the homogeneous system of linear 
equations of the nonhomogeneous system (10). This is 
obvious if we consider the unknowns 0;)0 of ~; 
corresponding to the point Xo. Taking into account the 
Kronecker-product structure of the vibration representa- 
tion (3), the system (11) takes the form 

Wj('~)o = (~;)o, (Wj, wj) 6 S o, (12a) 

Wi(~)0 = 0;)i, (W;, w~) ~/S 0. (12b) 

For the elements belonging to the site-symmetry group So 
of the point Xo, the set of equations (12a) forms a 
subsystem in the coefficients (~)0 while (12b) introduces 
relations between the coefficients (~;)0 and (~)i corre- 
sponding to the X,. point of the Oc(Xo) orbit. 

The possibility of reading directly the identity modes 
from the coordinate triplets giving the positions of the 
equivalent atoms of G orbits, listed under Wyckoff 
positions in 1/95, follows from the relation between the 
solutions of the nonhomogeneous system of linear 
equations (10) and the solutions of the corresponding 
homogenous system of linear equations (12a), (12b). 
Solutions for the ~ column matrix are obtained from the 
Wyckoff positions with variable parameters. The number 
of variable parameters of the Wyckoff position corre- 
sponds to the multiplicity of the identity representation 
D ~ of G in the corresponding vibration representation. 
No solution for ~; is obtained from Wyckoff positions 
without variable parameters, as they correspond to the 
trivial solutions of the homogenous system. 

Example 1. Table 1 shows how the identity modes for 
an orbit of atoms at Wyckoff position 4(c) in a Pnam (a 
non-conventional setting of  Pnma, No. 62)I" structure can 
be directly derived from the set of triple coordinates 
describing the orbit. The 4(c) Wyckoff position is 
described by two variable parameters, so there are two 
identity modes for the atoms occupying this position. 
One possible choice for these modes follows directly 
from the coordinates of the 4(c) equivalent atoms and is 

? A non-conventional setting of Pnma has been chosen in order to 
facilitate the comparison with the results of Perez-Mato, Gaztelua, 
Madariaga & Tello (1986) discussed below (see §5). 
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Table 1. Identity symmetry modes for 4(c) atoms of  Pnam 

Their number and patterns follow directly from the variable parameters 
of  the 4(c) orbit o f  P n a m  

Atom Coordinates of  4(c) atoms of  
label P n a m  

1 x y 1/4 
2 - x + l / 2  y + l / 2  3/4  
3 -x -y 3/4 
4 x+1/2 - y + 1 / 2  1/4 

Normalization factors 

x mode 
x y 

1 0 

-1 0 
-1 0 

1 0 
1/2 

y mode 
z x y z 

0 0 1 0 
0 0 1 0 
0 0 - 1  0 
0 0 - 1  0 

1/2 

listed in Table 1. Similarly, one could write down the 
modes for the atoms occupying an orbit belonging to the 
general Wyckoff position 8(d) of Pnam. In this case, 
there are three independent displacive modes and they 
can be chosen following the coordinates of the 8(d) 
atoms, i.e. along the a, b and c axes. 

4. Determination of chain-adapted symmetry modes 

4.1. Group-subgroup chain with a maximal subgroup 

Consider a group-subgroup chain G > H, where H is 
a maximal subgroup of G. Atoms that are symmetrically 
equivalent under G, i.e. belong to the same orbit of G, 
may become non-equivalent under H (the orbit splits) 
and/or their site symmetries can be reduced. It is 
important to note that this orbit behavior is the same 
for all orbits belonging to the same Wyckoff position 
(Wondratschek, 1993). 

As explained in §3, the identity modes for the group G, 
say eG,j = 1 . . . . .  n °, for atoms occupying a Wyckoff 
position (WP)G follow directly from its variable param- 
eters. Similarly, one obtains the symmetry modes en 
compatible with the subgroup H by examining the 
Wyckoff positions (WP;),  into which (WP)G splits: 

(WP)c -+ (WPl)  H U (WP2) n U . . .  U (WPk) H. (13) 

Here, Wyckoff positions of H, (WPi)H, originating from a 
Wyckoff position of G, (W'P)G, are connected by the 
union symbol. Taking into account the variable param- 
eters of all (WPi) H originating from (WP)o, one obtains 
the identity modes ~;H, i - - 1  . . . . .  n H, for the atoms 
occupying the high-symmetry Wyckoff position (WP)o. 
[Obviously, the number of ~;H modes corresponds to the 
number of variable parameters of all (WPi)H in (13).] If it 
is possible to find some linear combinations of the ~n 
modes that are also invariant with respect to G > H, then 
these linear combinations are the chain-adapted G modes 
~o defined in §2. [Similar to the case of identity modes, 
here and below, we introduce a column-matrix notation 
~ for the chain-adapted modes ~ ( x ,  llj), defined in (1)]. 
The determination of ~ is straightforward as the chain- 
adapted G modes should correspond in number and form 
to the ~G modes obtained for (WP)G. 

The relation between the ~:// modes and the chain- 
adapted G and H modes (~o and ~/-/) can be expressed by 
a real square matrix Xo n whose elements (X~)ij are the 
coefficients necessary for the chain-adaptation proce- 
dure. Its dimension equals the number of en modes. 

n If 

~[ ~ d + ̀x ' '  n ' .  = z_.., ~ ~ o)ji, i =  1 . . . . .  (14) 
j= l  

The matrix X~ can be chosen so that ~z = ~o, for 
i = 1 . . . . .  n °, and ~z = ~.,, for i = n ° + 1 . . . . .  n". One 
should note that the chain-adaptation procedure imposes 
restrictions only on the elements (X~)/, of those columns 
of the matrix X~ (called chain-adaptation matrix in the 
following) that correspond to the G modes (i.e. 
i = 1 . . . . .  n°). The rest of the coefficients (X~)ji are 
restricted only by the orthogonal form of X~. 

It is worth noting that the chain-adaptation procedure 
of e H modes [~.f (14)] is always possible if the secondary 
modes ~o are existing, i.e. it is always possible to 
construct such linear combinations of gv modes that are 
also compatible with the G symmetry. Obviously, any 
solution of the defining system of linear equations (11) 
for the elements of the reduction matrix ~ for the group G 
is also a solution of the system (11) reduced to the 
subgroup H. 

Example 2. Consider the group-subgroup chain 
Pnam > Pna21 (Pna21 is a maximal translationengleiche 
subgroup of Pnam). In the transition to Pna2~ symmetry, 
the orbits belonging to the 4(c) Wyckoff position of 
Priam do not split, their site symmetry is reduced and 
they become orbits of the general position 4(a) for the 
subgroup Pna21, which symbolically can be written as 

4c(..m)x, y, 1/4---> 4a(1)x, y,z.  (15) 

Here, each Wyckoff position orbit is presented by its 
multiplicity, Wyckoff letter, site-symmetry group (in 
parentheses) and a coordinate triplet in the asymmetric 
unit. The identity Pna2~ modes for the 4(a) atoms are 
listed in Table 2. Their relationships with the correspond- 
ing identity Pnam modes of 4(c) atoms (Table 1) are 
evident. Obviously, the identity Pna21 mode (which we 
call Pna21 mode for short) along the c axis is a primary 
distortion for a hypothetical displacive Pnam > Pna2~ 
phase transition. The x and y modes of Pna2~ symmetry 
are secondary ones as they are also invariant with respect 
to Pnam. In this case, the chain-adaptation matrix (14) is 
a trivial three-dimensional unit matrix. 

Example 3. Consider the group-subgroup chain Pnam 
> P n a m ( a ' -  3a). Pnam(3a) is a maximal isomorphic 
subgroup of index 3 obtained by the tripling of the a axis. 
In that case, each of the 4(c) orbits splits into three 
Pnam(3a) orbits of 4(c) type: 

4c(..m)x, y, 1/4 --+ 4c(..m)x, y, 1/4 U 4c(..m)x + 1, y, 1/4 

U 4c(..m)x 4- 2, y, 1/4. (16) 
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Table 2. Iden t i t y  s y m m e t r y  m o d e s  f o r  4 (a )  a t o m s  o f  P n a 2 1  

Their number and patterns follow directly from the variable parameters of the 4(a) orbit of Pna2~. 

Atom Coordinates x mode y mode z mode 
label of 4(a) atoms of Pna21 x y z x y z x y z 

1 x y z 1 0 0 0 1 0 0 0 1 
2 - x + 1 / 2  3'+1/2 z + l / 2  -1 0 0 0 1 0 0 0 1 
3 -x -y  z+  1/2 -1 0 0 0 -1 0 0 0 1 
4 x+1/2  - y + 1 / 2  z 1 0 0 0 -1 0 0 0 1 

Normalization factors 1/2 1/2 1/2 

Table 3. C h a i n - a d a p t e d  x m o d e s  o f  4(c)  a t o m s  f o r  P n a m  > P n a m ( a '  = 3a)  

Three consecutive cells along the x axis are considered. The chain-adapted modes are listed in the last columns of the table: there is one Pnam mode 
and two Pnam(a) modes. 

x coordinates x symmetry modes 
Atom Pnam(a'=3a) basis Identity Chain-adapted modes 
label Pnam basis Coordinates Orbit splitting Pnam(3a) modes Pnam Pnam(3a) 

1 x x / 3  x' 1 0 0 1 1 0 
2 - x  + 1/2 - x / 3  + 1/6 - x"  + 1/2 0 - 1 0 - 1 1/2 - 1 
3 - x  - x / 3  - x  ~ - 1 0 0 - 1 - 1 0 
4 x + 1/2 x/3 + 1/6 x" + 1/2 0 0 1 1 -1/2 -1 
1' x + 1 x/3 + 1/3 x" 0 1 0 1 - 1/2 1 
2' -x + 3/2 - x / 3  + 1/2 -x '  + 1/2 - 1 0 0 - 1 - 1 0 
3' - x  + 1 - x / 3  + 1/3 - x "  0 0 - 1 - 1 1/2 1 
4' x+3/2  x / 3 +  1/2 x '+ 1/2 1 0 0 1 1 0 
1" x + 2 x/3 + 2/3 x" 0 0 1 1 - 1/2 - 1 
2" -x + 5/2 - x / 3  + 5/2 -x"' + 1/2 0 0 -1 -1 1/2 1 
3" - x  + 2 - x / 3  + 2/3 -x" 0 - 1 0 - 1 1/2 - 1 
4" x+5/2  x / 3 + 5 / 6  x" + 1/2 0 1 0 1 -1/2 1 

Normalization factors 1/2 1/2 1/2 (1/12) 1/2 (1/6) I/2 (1/8) 1/2 

Owing to the tripling of  the cell along the a axis, there 
are 12 atoms in the unit cell of  P n a m ( 3 a )  occupying the 
three 4(c) orbits. They originate from the 4(c) orbit o f  
P n a m  and their x coordinates are given in the second 
column of  Table 3. [The coordinates of  the atoms with 
primed labels are obtained from the coordinates of  the 
original set by adding a translation (1, 0, 0) and those 
with double prime by adding the translation (2, 0, 0).] 
The distribution of  the 12 atoms among the three 4(c) 
orbits o f  P n a m ( 3 a )  (column 4 of  Table 3) is easily 
obtained after the transformation of  the coordinates of  the 
atoms to the conventional basis o f  the subgroup (column 
3 of  Table 3) by the transformation matrix 

[ 3 0 0 )  

P = |010 . 
\001 

For example, atoms 1, 3, 2' and 4' form the representative 
set o f  the first 4(c ) orbit (x' = x / 3 ) ,  atoms 3, 1', 2" and 4" 
form the second one (x" = x / 3  + 1/3) etc'. 

Consider the three F, Pnam(3a) modes along the a axis, 
which are listed under identity P n a m ( 3 a )  modes in Table 
3. The fact that they originated from one P n a m  x mode 
shows that there exists a linear combination of  them that 
is compatible with P n a m  symmetry. Comparison with the 
P n a m  mode in Table 1 clearly shows that this mode 
should be the one listed as the chain-adapted P n a m  mode 

in Table 3, i.e. a (1, 1, 1) combination of  the three 
P n a m ( 3 a )  modes and, therefore, the chain-adaptation 
matrix in this case can be chosen in the form 

(1/3) 1/2 (2/3) 1/2 0 
(1/3) 1/2 - ( 1 / 6 )  1/2 (1/2) 1/2 

(1/3) 1/2 - ( 1 / 6 )  1/2 ( 1 / 2 )  1/2 

(17) 

The coefficients in the first column of  Xg  determine the 
linear combination of  P n a m ( 3 a )  modes compatible with 
the P n a m  symmetry; the other two colunms correspond 
to the two chain-adapted P n a m ( 3 a )  modes, i.e. to the 
primary modes for a hypothetical symmetry break 
P n a m  > P n a m ( 3 a ) .  

4.2. C h a i n - a d a p t e d  m o d e s  f o r  an  a r b i t r a r y  g r o u p -  

s u b g r o u p  c h a i n  

The generalization of  the above-discussed procedure 
for the determination of  the chain-adapted modes, for the 
case of  an a r b i t r a r y  group-subgroup chain, is straight- 
forward: 

(i) La t t i c e  o f  m a x i m a l  s u b g r o u p s .  Given a group-  
subgroup chain G > H, construct the lattice of  maximal 
subgroups Zi relating G and H (Fig. 1). The necessary 
data on maximal subgroups of  space groups is partly 
available in 1795. A new volume of  I n t e r n a t i o n a l  Tables  

f o r  C r y s t a l l o g r a p h y ,  supplementing Volume A on max- 
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imal subgroups of space groups, is in preparation~ 
(International Tables for Crystallography, 1998, Vol. H, 
henceforth referred to as ITH). 

(ii) Splitting of Wyckoff positions. Consider an 
occupied Wyckoff position (WP)G and determine its 
splitting scheme for a particular group-subgroup chain of 
maximal subgroups. The knowledge of the matrix (the 
so-called transformation matrix) relating the bases of the 
group Zi and subgroup Z,+l is of importance for the 
determination of the behavior of a Wyckoff position 
along a group-subgroup chain Z, > Z~+ 1. Such data are 
not available in 1795, but are given in ITH. 

Determine the splitting schemes for all possible 
group-subgroup chains of the lattice of maximal 
subgroups G > H and repeat the procedure for all 
occupied Wyckoff positions. 

(iii) Chain-adapted symmetry modes. Consider a 
particular splitting scheme of a Wyckoff position (Fig. 
2). Determine the (normalized) I; H modes and apply the 
chain-adaptation procedure on the corresponding group- 

t The complete data on maximal subgroups of  space groups is available 
from the authors upon request. 

lZ I 

• ~Z I 

zZ 1 

,z, i " 

• 2Z 2 

l z  k 

~ H  
Fig. 1. Lattice of  maximal subgroups for the group-subgroup chain 

G > H. The groups G and H are related by the subgroups kZ i, where 
each of  the intermediate subgroups kZi is a maximal subgroup of 
k z l _  1 . 

G > Z 1 > Z 2 > ... > H 

(WP) G - -  (WP1)zI __ (WP2)z2 . . . . . . . . . .  (WPI) H 

(WP2)z2 . . . .  (WP2) H 

• (WP3)H 

• (WP2)z1 . . . . . . .  

........ (WPn) H 

Fig. 2. Splitting of  an occupied orbit belonging to a Wyckoff 
position (WP)c; into (WP)H orbits following the chain 
G > ZI > Z2 > . . . >  H. 

subgroup chain of maximal subgroups (Fig. 1): Starting 
from the ~" modes and following up the group-subgroup 
chain, carry out a stepwise adaptation procedure, i.e. 
determine the adaptation matrix xZ' +' and apply (14) 
sequentially for each pair of subgroups Zi+ l < Zi. The 
chain-adapted ~z modes for a given group-subgroup 
change G > H are obtained when this procedure is 
carried out along all possible chains of maximal 
subgroups comprising the subgroup lattice G > H (Fig. 
1). The possibility for a compatible adaptation of the ~tt 
modes along the different chains of maximal subgroups 
follows from the fact that the chain-adapted modes ~z 
correspond either to different irreps of G or to different 
orthogonal subspaces within one irrep space. 

5. Example 

In the following, the example of potassium selenate 
K2SeO4 is discussed. The high-symmetry phase of 
potassium selenate K 2 S e O 4  is orthorhombic with space 
group Pnam (non-conventional setting of Pnma, No. 62). 
On cooling, the crystal undergoes a phase transition into 
a displacive incommensurate phase followed by a lock-in 
transition into a ferroelectric commensurate one of Pna2~ 
symmetry characterized by a polar axis along c and a 
tripled a lattice constant (Iizumi, Axe, Shirane & 
Shimaoka, 1977; Perez-Mato, Gaztelua, Madariaga & 
Tello, 1986). 

5.1. Lattice of maximal subgroups for Pnam > Pna21(3a) 
(Fig. 3) 

Pna21(3a ) is a general subgroup of Pnam of index 6. 
The three antiphase domains of the low-symmetry phase 
correspond to the three conjugate subgroups Pna21(3a), 
related by origin shifts. As it is seen from Fig. 3, there are 
two chains of maximal subgroups for each of the 
Pna21(3a ) subgroups: one over the translationengleiche 
subgroup Pna2~ of index 2 and a second one over a 
klassengleiche subgroup Pnam(3a) of index 3. 

• Pnm'n 

kra),, / I ~ k [ 3 ]  ~ Pna2! 

i 
Pnam (3a) P n a m ( 3 ~ - J ~  ~ Pnam(3a) I k[3] 

Pna21 (3a) Pna21 (3a) Pna21 (3a) 

origin shill origin shiit 

Fig. 3. Lattice of  maximal subgroups for Pnam > Pna21(3a). The 
symbols k[3] and t[2] indicate the type (k for klassengleiche and t for 
translationengleiche) and the index of the corresponding maximal 
subgroups. 
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Table 4. Chain-adapted z modes for Pnam > Pna21(3a) (no origin shift) 

Three consecutive cells along the x axis are considered. There is one Pna21 mode, and two Pna2~(3a) modes. 

z coordinates of  4(c) atoms z symmetry modes 
Atom Pnam Identity Chain-adapted modes 
label basis Pna21 basis Pna21(3a) basis Pna21(3a) modes P n a 2 1  Pna21(3a) 

1 1/4 z z' 1 0 0 1 1 0 
2 3/4 z + l / 2  z" + 1/2 0 1 0 1 - 1 / 2  1 
3 3/4 z + 1/2 z' + 1/2 1 0 0 1 1 0 
4 1/4 z z'" 0 0 1 1 - 1 / 2  -1  
1' 1/4 z z" 0 1 0 1 - 1/2 1 
2' 3/4 z + 1/2 z' + 1/2 1 0 0 1 1 0 
3' 3/4 z + l / 2  z" + 1/2 0 0 1 1 - 1 / 2  -1  
4' 1/4 z z' 1 0 0 1 1 0 
1" 1/4 z z"' 0 0 1 1 - 1 / 2  -1  
2" 3/4 z + l / 2  z'" + 1/2 0 0 1 1 - 1 / 2  -1  
3" 3/4 z + 1/2 z" + 1/2 0 1 0 1 - 1 / 2  1 
4" 1/4 z z" 0 1 0 1 - 1 / 2  1 

Normalization factors 1/2 1/2 1/2 (1/12) 1/2 (1/6) 1/2 (1/8))/2 

5.2. Splitting of  Wyckoff positions 

The high-temperature phase of K2SeO4 is described by 
Kalman, Stephens & Cruickshank (1970). The atoms 
either lie on a symmetry plane [4(c) Wyckoff position] or 
occupy the general 8(d) Wyckoff position. 

The splitting of the 4(c) Wyckoff position for the two 
possible chains of maximal subgroups for Pna2~(3a) 
with no origin shift are given in Fig. 4. The diagrams of 
Wyckoff-position splitting (such as the one given in Fig. 
4) are the same diagrams for the three conjugated 
subgroups of Pna21(3a). However, it is very important to 
note that the distribution of the atoms of the (WP)G orbit 
into (WPi)H orbits depends on the individual subgroup: it 
is different for the three Pna21(3a) subgroups. 

Consider the chain Pnam > Pna21 > Pna21(3a). The 
4(c) orbit of Pnam does not split, but only its site 
symmetry is reduced [cf Example 2, equation (15)]. In 
the transition to Pna21 (3a), the 4(a) orbit of Pna21 splits 
into three 4(a) orbits. The distribution of the 12 atoms in 
the unit cell of Pna21(3a ), with no origin shift, into the 
three orbits is easily seen after the transformation of the 
coordinates of the atoms by the same matrix P as the one 
given in Example 3: atoms 1, 3, 2' and 4' form a 
representative set of the first 4(a) orbit (x' = x/3, y' -- y, 
z' = 1/4), atoms 3, 1', 2" and 4" form the second one 
(x" = x/3 + 1/3, y" = y, z" = 1/4) etc. 

For the two subgroups Pna21(3a ) with origin shifts, 
the same transformation matrix P can be used but in 
addition the new origins have to be taken into account: 
the relations between the conventional bases of Pna21 
and each of the Pna2x(3a ) subgroups are given by the 
column matrix pairs (P, p), where p are the columns 

( i )  and ( i ) "  

For example, in the former case, the distribution of the 
atoms is as follows: atoms 1', 2", 3' and 4" form the orbit 

with x' = x/3; atoms 1", 2', 3, 4 form the set for the orbit 
with x" = x/3 + 1/3; and atoms 1, 2, 3" and 4' form the 
set with x'" = x/3 + 2/3. 

5.3. Chain-adapted symmetry modes for Pnam > 
Pna21(3a) 

Owing to the splitting of the 4(c) Wyckoff position of 
Pnam into three general positions of Pna21(3a) (Fig. 4), 
there are nine symmetry modes compatible with the low- 
symmetry group, namely, three along a, three along b 
and three along c. 

According to the Wyckoff splitting schemes along the 
two chains (Fig. 4), there are three Pna21(3a ) z modes 
and one Pna2~ z mode. The distribution of the 12 4(a) 
atoms in the unit cell of Pna21 (3a) among the three 4(a) 
orbits determines the corresponding Pna21 (3a) z modes, 
which are given in Table 4. The Pna21 z mode is obvious 
from the Pnam > Pna21 > Pna2x(3a ) splitting in Fig. 4 
[cf also the corresponding z coordinates of the 4(c) 

Pnam > ~ a m ( 3 a )  > P n ~ ( 3 a )  

4~..m) x,y,1/4 . ~  4~. .m) x,y,1/4 4a (1) x,y,z 

~ 4~..m) x ' ,y ' , l /4 4a(l) x',y',z" 1 

- -  ~ . . m )  x " , y " , l / 4  - -  4~1)  x " , y " , z "  

Pnam > Pna21 > Pna21(3a ) 

4c,(..m) x,y,1/4 4a(1) x,y,z ~ 4a (1) x,y,z 

4a(l ) x" ,y" ,z" 

4a(1) x" ,y" ,z"  

Fig. 4. Splitting of ' the 4(c) Wyckoff position for the two chains of  
maximal subgroups for Pnam > Pna21(3a). Each Wyckoff position 
is specified by its multiplicity, Wyckoff letter, site symmetry group 
(in parentheses) and coordinates of  a representative point. 
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Table 5. Chain-adapted z modes of  4(c) atoms for Pnam > Pna21(Ja) (origin shift 100) 

Three consecutive cells along the a axis are considered. There are one Pna21 mode and two Pna21(3a) modes. 

z symmetry modes 

z coordinates of  4(c) atoms Identity 
Atom Pnam 
label basis Pna21 basis Pna21(3a) basis Pna263a) modes Pna21 

1 I / 4  ~ Z" 0 0 1 1 - 1 / 2  - 1  
2 3/4 z + '1 /2  f " +  1/2 0 0 1 1 - 1 / 2  - 1  
3 3/4 z + 1/2 f ' +  1/2 0 1 0 1 - 1 / 2  1 
4 1/4 z f '  0 1 0 1 - 1 / 2  1 
1' 1/4 z z 1 0 0 1 1 0 
2' 3 /4  z + 1/2 i ' +  1/2 0 1 0 1 - 1 / 2  1 
3' 3 /4  z + 1/2 z + 1/2 1 0 0 1 1 0 
4' 1/4 z i "  0 0 1 1 - 1 / 2  - 1  
1" 1/4 - i '  0 1 0 1 - 1 / 2  1 
2" 3/4 z +-1/2 z + 1/2 1 0 0 1 1 0 
3" 3/4 z + 1/2 f " +  1/2 0 0 1 1 - 1 / 2  - 1  
4" 1/4 z z 1 0 0 1 1 0 

Normalization factors 1/2 1/2 1/2 (1/12) 1/2 (1/6) 1/2 (1/8) 1/2 

Chain-adapted modes 

Pna2 ~ (3a) 

Table 6. Chain-adapted x and y modes of  4(c) atoms for the symmetry break Pnam > Pna21(3a) with no origin shift 

The atoms of  three consecutive cells along the x axis are considered. In both cases, there is one Pnam mode and two Pnam(3a) modes. 

Priam > Pna21(3a), no origin shift 
Chain-adapted x modes Chain-adapted y modes 

Atom label Pnam Pnam(3a) P r i a m  Pnam(3a) 

1 1 1 0 1 1 0 
2 - 1  1/2 -1  1 - 1 / 2  1 
3 - 1  - 1  0 - 1  - 1  0 
4 1 - 1 / 2  - 1  - 1  1/2 1 
1' 1 - 1 / 2  1 1 - 1 / 2  1 
2' - 1  - 1  0 l 1 0 
Y - 1  1/2 1 - 1  1/2 1 
4' 1 1 0 - 1  - 1  0 
1" l - 1 / 2  - l  l - 1 / 2  - 1  
2" - 1  1/2 1 1 - 1 / 2  - 1  
3" - 1  1/2 - 1  - 1  1/2 - 1  
4" 1 - 1 / 2  l - 1  1/2 - 1  
Factors (1/12) I/2 (1/6) 1/2 (1/8) 1/2 (1/12) 1/2 (1/6) 1/2 (1/8) 1/2 

atoms given in Table 4]: all atoms should displace 
equally along z. This mode can be constructed as a linear 
combination of the three Pna21 (3a) modes. The resulting 
chain-adapted modes are listed in Table 4. 

In Table 5, the chain-adapted z modes for Pna21(3a ) 
subgroup with an origin shift (1, 0, 0) are also listed. As 
expected, the modes show the same pattern, up to a cyclic 
permutation of the three consecutive cells of Pnam along 
a 

In the case of the three x modes, it is sufficient to 
consider the chain Pnam> Pnam(3a) > Pna21(3a ). The 
three Pna21(3a ) modes are also invariant with respect to 
Pnam(3a), i.e. the adaptation matrix can be chosen as the 
unit one for the Pnam(3a) > Pna21 (3a) chain step. Their 
further adaptation along the Pnam > Pnam(3a) chain 
step gives one mode with Pnam symmetry (cf example 
3, Table 3). Nothing new is learnt from the examination 
of the Wyckoff-position behavior for the chain 
Pnam > Pna21 > Pna21(3a ). The chain-adapted x 
modes for Pnam > Pna21(3a ) are given in Table 6. 

The results for the three chain-adapted y modes are 
similar to the case of x modes: one is compatible with 
Pnam symmetry and two are invariant with respect to 
Pnam(3a). They are also listed in Table 6. 

Therefore, the primary distortion for an orbit of 4(c) 
atoms is described by the two modes along the c axis 
listed in the last two columns of Table 4 and which are 
the only chain-adapted Pna21 (3a) modes. 

5.4. Comparison with the conventional group-theoretical 
approach 

The active irrep for the symmetry change Pnam > 
Pna21(3a) is E z with the wave vector q0 = 1/3a* 
(Iizumi, Axe, Shirane & Shimaoka, 1977; Perez-Mato, 
Gaztelua, Madariaga & Tello, 1986), the order parameter 
being a complex amplitude: Q = p exp(iO). The space 
group Pna21(3a ) is the isotropy subgroup of the 
representation only for specific values of the order- 
parameter phase: 0 = zr/2 + n2Jr/6. 
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Table 7. Polarization vectors of the E 2 modes for 4(c) atoms in a Pnam structure and the resulting chain-adapted 
Pna21(3a) modes (last two columns) as obtained by the conventional group-theoretical approach (Perez-Mato, 

Gaztelua, Madariaga & Tello, 1986) 

The cell index l has the values l = 0, 1,2 for the three consecutive Pnam cells along the x axis; a = cos(2rcx/3), b = sin(2~rx/3), where x is the x 
coordinate o f  atom 1. 

Atom label G(xIZ z, 1) g=(KIZ2,2) 0=(xll) 0:(x12) cos[qo . r ( l , x )+zr /2+O=(x l l )  ] cos[qo . r ( l , x )+rr /2+Oz(x l2 )]  

1 1 i 0 zr/2 - a  sin(2Jrl/3) - b cos(2rrl /3) - a  cos(2rrl /3)  + b sin(2Jrl/3) 
2 1 - i  0 3rr/2 - a  sin(2rrl/3 + 27r/6) a cos(2rrl /3 + 2rr/6) 

+ b  cos(27rl/3 + 2rr/6) + b  sin(2rrl/3 + 2zr/6) 
3 - 1 i rr 7r/2 a sin(2Jrl/3) - b cos(27rl/3) - a  cos(2zrl/3) - b sin(2pil/3) 
4 - 1 - i  Jr 3Jr/2 a sin(2rrl/3 + 2Jr/6) a cos(2rrl /3 + 2~r/6) 

+ b  cos(2zrl/3 + 2rr/6) - b  sin(2zrl/3 + 2~r/6) 

For the atoms in a 4(c) orbit, there are two independent 
modes of E 2 symmetry (Perez-Mato, Gaztelua, Madar- 
iaga & Tello, 1986). Their polarization vectors, 
G0cl E2, i), i = 1, 2, are listed in Table 7. According to 
(24) in Appendix A, the chain-adapted Pna21(3a ) modes 
derived above and listed in Table 4, which describe the 
primary distortion, can be related directly with the E 2 
modes in the form: 

~na21(3a)(K, lli) = CNQ G(K[ ~]2, i) exp[iq0 • r(l, x)] 

+c . c .  (18) 

Introducing one of the possible values for the order- 
parameter phase, say ~r/2, one can rewrite (18) as 

~na2'(3a)(K, lli) = CNPlG(x[ ~]2, i)1 cos[q 0 • r(l, to) 

+ zr/2 + G(xli)]. (19) 

Here, the component moduli IG(KI Z2, i)1 are all equal to 
one and O~(xli) are the phases of the components of the 
mode polarization vectors. As seen from Table 7, the 
modes have non-zero components along c only. There- 
fore, one can write: 

~Pna21(3a)(K, lli) ~ cos[q 0 • r(l, x) + :rr/2 + Oz(xli)]. (20) 

The resulting chain-adapted Pna21(3a ) modes are given 
in the last two columns of Table 7. These two modes can 
be linearly combined in order to obtain the simpler ones 
listed in Table 8. The displacements of these modes for 
the 12 atoms in three consecutive cells coincide, as 
expected, with those listed in Table 4. The chain-adapted 
modes listed in Table 5 for the subgroup Pna2~(3a) with 
origin shift (1, 0, 0) correspond to another equivalent 
choice of the order-parameter phase in (18). 

Apart from the two primary Pna2~(3a) modes 
analyzed above, Tables 4 and 6 contain all possible 
chain-adapted modes for the 4(c) orbits that have to be 
included in an expression like (1). It is interesting to 
identify them in terms of the conventional symmetry 
modes described by Perez-Mato, Gaztelua, Madariaga & 
Tello (1986). According to Tables 4 and 6, there are two 
Pnam modes (along a and b), one Pna21 mode along c 

Table 8. Chain-adapted Pna21(3a) modes obtained by 
the conventional group-theoretical approach 

Their  form (which is obtained by a convenient linear combination o f  
those o f  Table 7), facilitates the comparison with the modes listed in the 
last two columns o f  Table 4. The cell index l has the values l = 0, 1,2 
for the three consecutive Pnam cells along the x axis. 

Atom label ~.e.~2, O.)(x ' lll ) ~z P~2' 13a)(x, ll2) 

1 - cos(2zrl/3) sin(2zrl/3) 
2 cos(2rrl /3 + 2~r/6) sin(2rrl/3 + 2Jr/6) 
3 - cos(2Jrl/3) - sin(2~rl/3) 
4 cos(2n'l /3 + 2~r/6) - sin(2rrl/3 + 2rr/6) 

and four Pnam(3a) modes (two along a and two along b). 
The Pnam and Pna21 modes are associated with irreps at 
the Brillouin-zone center and obviously represent directly 
modes of symmetry A ig and B2u as their isotropy groups 
correspond exactly to Pnam and Pna21. The Pnam(3a) 
modes must be associated with the irrep E 3 which is 
indeed the symmetry of two x models and two y modes. 
The relation between the E 3 modes, listed in Perez-Mato, 
Gaztelua, Madariaga & Tello (1986), and those given in 
Table 6 is given by an equation of the type (24) (see 
Appendix A) in a form analogous to the one described 
above for the primary E 2 modes. 

6. Conclusions 

Primary and secondary contributions pl;esent in a 
structural distortion resulting from a displacive phase 
transition can be identified and separated making use 
only of the information provided by International Tables 
for Crystallography. For any space group, the identity 
symmetry modes are directly deducible from the list of 
Wyckoff positions. This fact, together with the knowl- 
edge on the splitting of the Wyckoff orbits along the 
chains of maximal subgroups that connect the space 
groups of the two phases, can be systematically used for 
a symmetry analysis of the distortion. This analysis can 
in general identify the unstable (primary) component in 
the distortion that corresponds to the order parameter. 
The method is quite simple and does not require any use 
of the apparatus of representation theory. 
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APPENDIX A 

In this Appendix, the relationship between the descrip- 
tion of displacive distortions in terms of the chain- 
adapted (group-invariant) modes defined above and the 
conventional approach using modes transforming accord- 
ing to irreps of G is discussed. In the usual approach, the 
atomic displacements are decomposed into a sum of 
contributions of different symmetry modes: 

u~(l, i,:) = ~ ~ ~ ~ C(qr, re,j) 
q*r j q~q* m 

× ~:,~(Klqr, m,j)exp[iq,  r(l, i,:)], (21) 

where r(/, K) is the position of atom (l, K) in the refer- 
ence structure of symmetry G and ~:~(Klqr, m,j)  
(t~ - x, y, z; K = 1 . . . . .  s) is the polarization vector of a 
particular symmetry mode with symmetry given by the 
irrep D q" ~ of G and wavevector q (belonging to the star of 
the representation, q*). The first sum in (21) refers to all 
irreps of G that are symmetry allowed in the structural 
distortion. The second sum [j = 1 . . . . .  n(q*r)] allows 
for the multiplicity of each irrep D q*~ in the decomposi- 
tion of the vibration representation of the structure and 
the last two sums exhaust the dimension of each irrep, the 
first one running through the branches of the representa- 
tion star, and the second (m -- 1 . . . . .  d~; d~ -- dimension 
of r) through the components of the small representation 
r. For multidimensional irreps, the symmetry-adapted 
coordinates C(qr,  m,j), with ( r , j )  fixed, may have some 
type of symmetry-forced relation among them in order to 
produce an H-invariant distortion. 

For each orbit, the symmetry modes depend only on 
the type of Wyckoff positions associated with it. 
Therefore, similar to the main text, all expressions can 
be considered valid separately for each single orbit of 
atoms. Each orbit has in general different symmetry 
coordinates C(qr, m,j) but the symmetry modes are 
identical for orbits corresponding to the same Wyckoff 
positions. 

Once obtained, the total distortion u~(l, K) from the 
experimental data and the relevant symmetry modes 
using group-theory tools, the values of the symmetry 
coordinates C(qr, m,j)  are derived from (21) using the 
orthogonal properties of the symmetry modes (Perez- 
Mato, Gaztelua, Madariaga & Tello, 1986). The primary 
(order-parameter) distortion is associated with the mode 
or modes becoming unstable at the transition and its 
amplitude is described by the order-parameter compo- 
nents. It can be expressed in the form 

u°(l, I,:) = ~ ~ Q(q, m)%(Klqr 0, m) exp[iq • r(l, K)], 
q~q~ m 

(22) 

where %(Klqr 0, m) are the polarization vectors of the 
unstable degenerate normal modes and Q(q, m) the 
corresponding normal coordinates, i.e. the order-param- 
eter components. On the other hand, the term in (21) 

corresponding to the active irrep Dq~ r° can  also be 
identified with the primary distortion. Comparison of 
(21) and (22) shows that the eigenvectors %(K]qr 0, m) of 
the primary distortion are determined by the values of the 
symmetry coordinates of the D q~r° modes: 

%0clqr 0, m) = C N Z C(qr0, m,J)r,~(xiqro, m,j), (23) 
J 

where CN is a normalization constant. 
According to the Landau description (Landau & 

Lifshitz, 1980), it should be expected that in (22) only 
the order-parameter components Q(q, m) are temperature 
dependent. Hence, the symmetry coordinates C(qr, m,j), 
for a fixed (q, m) and for all orbits, must change with 
temperature in such a way that their relative values are 
maintained, keeping unchanged the eigenvectors de- 
scribed by (23). This is an important feature of the 
temperature variation of the structural distortion, implicit 
in the Landau description of a structural phase transition, 
and confirmed in several experimental cases (Perez- 
Mato, Gaztelua, Madariaga & Tello, 1986; Withers, Hua, 
Welberry & Vincent, 1988; Guelylah, Aroyo & Perez- 
Mato, 1996). 

According to (21), (22) and (23), the H modes in (1) 
have a direct relationship with the D q;,~° modes. For 
instance, if the subspace, in the representation space of 
D q~°, with isotropy group H, is one-dimensional (a rather 
common case, d ,  - 1), the chain-adapted H modes 
~t(K, lii) can be identified with: 

~(K,  lli) -- C N Z ~ Q(q, m) 
qEq~ m 

x ~:,~(xlqr 0, m, i)exp[iq • r(l, K)], (24) 

where CN is again a suitable normalization constant and 
the multiplicity index i can be chosen the same on both 
sides of the equation. Thus, the H modes are symmetry- 
fixed linear combinations [described by the normal 
coordinates Q(q, m)] of the Dq0 ~0 symmetry modes, If, 
on the other hand, d H is equal to the total dimension of 
Dq~ TM, then the set of chain-adapted H modes can be 
chosen in such a way that 

H ~ (K, llj) = CN~,~(KIqr0, m, i) exp[iq • r(l, K)] (25) 

and the multiplicitly indexj may be identified with the set 
of labels (q, m, i). Hence, in this particular case (which 
includes the rather common situation when the active 
irrep is one-dimensional), the chain-adapted H modes 
can be directly identified as the set of D q;,~° modes. In 
intermediate cases with 1 < d n < d,.~, the H modes 

. .  ~t 0 0 . . . .  

are particular (symmetry-fixed) linear combinations ot  
the D q;~° modes. 

The case of the secondary distortion in (1), formed by 
the set of Z modes with Z being strictly a supergoup of H, 
is similar. Usually, in (21), each irrep D q'~, different from 
Dq; TM, has among its isotropy subgroups a single 
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supergroup of H and this supergroup does not coincide 
for different irreps. In this rather common case, each Z 
distortion can be identified with a particular irrep D q'~, 
and the corresponding Z modes are to be related with the 
D q'~ modes in a form analogous to the one explained 
above for the H modes. 
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